Received 7 October 2003

Online 23 October 2003

Accepted 10 October 2003

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Daqing Shi,^a* Juxian Wang,^a Xiangshan Wang,^a Qiya Zhuang^a and Kaibei Yu^b

^aDepartment of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China, and ^bChengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 People's Republic of China

Correspondence e-mail: dqshi@263.net

Key indicators

Single-crystal X-ray study T = 292 KMean σ (C–C) = 0.004 Å R factor = 0.044 wR factor = 0.127 Data-to-parameter ratio = 12.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Ethyl 2-amino-4-(2,4-dichlorophenyl)-4*H*benzo[*f*]chromene-3-carboxylate

The title compound, $C_{22}H_{17}Cl_2NO_3$, was synthesized by the reaction of 2-naphthol with 2,4-dichlorobenzaldehyde and ethyl cyanoacetate in ethanol in the presence of KF/Al₂O₃ as catalyst. X-ray analysis reveals that the pyran ring adopts a boat conformation. In the crystal structure, the amino group is involved in both intra- and intermolecular $N-H\cdots O$ hydrogen bonds.

Comment

4*H*-Chromene is a building unit of some natural products. 4*H*-Chromenes with amino and cyano groups are also synthons of some special natural products (Hatokeyama *et al.*, 1988; O'Callaghan & McMurry, 1995). We have previously reported the synthesis of some 4*H*-chromene derivatives (Shi *et al.*, 2002; Zhuang *et al.*, 2002). We report here the X-ray crystal structure of the title compound, (I).

C

COOCH₂CH₃

Experimental

The title compound (I), was prepared by the reaction of 2-naphthol with 2,4-dicholorobenzaldehyde and ethyl cyanoactate in ethanol in the presence of KF/Al₂O₃ as catalyst (m.p. 468–470 K). Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of an *N*,*N*-dimethylformamide–water solution.

Crystal data

C₂₂H₁₇Cl₂NO₃ $M_r = 414.27$ Monoclinic, P_{2_1}/n a = 14.505 (2) Å b = 9.037 (1) Å c = 14.913 (2) Å $\beta = 101.21$ (1)° V = 1917.5 (4) Å³ Z = 4

Data collection

Siemens P4 diffractometer ω scans Absorption correction: ψ scan (XSCANS; Siemens, 1994) $T_{\min} = 0.770, T_{\max} = 0.917$ 4195 measured reflections 3379 independent reflections 2292 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.127$ S = 1.093379 reflections 263 parameters H atoms treated by a mixture of independent and constrained refinement

Table 1

Selected geometric parameters (Å, °).

O1-C1	1.361 (3)	N-C1	1.335 (3)
O1-C5	1.391 (3)	C1-C2	1.362 (3)
O2-C14	1.343 (3)	C2-C3	1.520 (3)
O2-C15	1.452 (3)	C3-C4	1.513 (3)
O3-C14	1.233 (3)	C4-C5	1.365 (3)
C1-O1-C5	117.88 (19)	C1-C2-C3	120.4 (2)
C14-O2-C15	118.6 (2)	O1-C5-C6	114.0 (2)
N-C1-O1	109.7 (2)	O3-C14-O2	121.6 (2)
N - C1 - C2	128.1 (3)	O3-C14-C2	126.8 (2)
O1-C1-C2	122.2 (2)	O2-C14-C2	111.6 (2)
C1-C2-C14	119.2 (2)	O2-C15-C16	107.7 (3)
C5-O1-C1-N	-165.7 (2)	C1-O1-C5-C4	-21.6 (3)
C5-O1-C1-C2	16.0 (3)	C1-O1-C5-C6	158.7 (2)
N-C1-C2-C14	6.6 (4)	O1-C5-C6-C7	178.1 (2)
O1-C1-C2-C14	-175.5(2)	C15-O2-C14-O3	-11.5(4)
N-C1-C2-C3	-168.9(2)	C15-O2-C14-C2	170.0 (3)
01-C1-C2-C3	9.1 (4)	C14-O2-C15-C16	-87.6 (4)

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$\begin{array}{c} N-H1A\cdots O3\\ N-H1B\cdots O3^{i} \end{array}$	0.859 (10) 0.851 (10)	2.09 (2) 2.215 (13)	2.726 (3) 3.033 (3)	130 (2) 161 (3)
Symmetry code: (i)	$\frac{3}{2} - x, y - \frac{1}{2}, \frac{3}{2} - z.$			

Amino atoms H1A and H1B were refined isotropically. The positions of the other H atoms were calculated and refined as riding, with C-H = 0.93–0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

 $D_x = 1.435 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 27 reflections $\theta = 2.9-15.2^{\circ}$ $\mu = 0.36 \text{ mm}^{-1}$ T = 292 (2) K Block, colorless $0.56 \times 0.52 \times 0.24 \text{ mm}$

$$\begin{split} R_{\rm int} &= 0.013 \\ \theta_{\rm max} &= 25.0^{\circ} \\ h &= -10 \rightarrow 17 \\ k &= -5 \rightarrow 10 \\ l &= -17 \rightarrow 17 \\ 3 \text{ standard reflections} \\ \text{every 97 reflections} \\ \text{intensity decay: 2.7\%} \end{split}$$

$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0657P)^2] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\rm max} = 0.001 \\ \Delta\rho_{\rm max} = 0.43 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.26 \ {\rm e} \ {\rm \AA}^{-3} \\ &{\rm Extinction\ correction:\ SHELXL97} \\ &{\rm Extinction\ coefficient:\ 0.0052\ (13)} \end{split}$$

Figure 1

The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2

View (Spek, 2003) of part of the crystal structure of (I), showing hydrogen bonding as dashed lines. Colour codes: green Cl, red O, blue N, and black C.

Data collection: *XSCANS* (Siemens, 1994); cell refinement: *XSCANS*; data reduction: *SHELXTL* (Sheldrick, 1997); program(s) used to solve structure: *SHELXTL*; program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank the Foundation of the 'Surpassing Project' of Jiangsu Province for financial support.

References

Hatokeyama, S., Ochi, N., Numata, H. & Takano, S. (1988). J. Chem. Soc. Chem. Commun. pp. 1202–1204.

O'Callaghan, C. N. & McMurry, T. B. H. (1995). J. Chem. Res. (S), p. 214.

- Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Shi, D. Q., Wang, X. S. & Tu, S. J. (2002). Chin. J. Org. Chem. 22, 1053–1056. Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Zhuang, Q. Y., Shi, D. Q., Tu, S. J. & Wang, X. S. (2002). *Chin. J. Appl. Chem.* **19**, 1019–1020.

Zhuang, Q. Y., Shi, D. Q. & Wang, X. S. (2003). Acta Cryst. E59, 01474-01475.