Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Daqing Shi, ${ }^{\text {a }}$ Juxian Wang, ${ }^{\text {a }}$ Xiangshan Wang, ${ }^{\text {a }}$ Qiya Zhuang ${ }^{\text {a }}$ and Kaibei $\mathbf{Y u}^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China, and ${ }^{\mathbf{b}}$ Chengdu Institute of Organic
Chemistry, Chinese Academy of Sciences, Chengdu 610041 People's Republic of China

Correspondence e-mail: dqshi@263.net

Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.044$
$w R$ factor $=0.127$
Data-to-parameter ratio $=12.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Ethyl 2-amino-4-(2,4-dichlorophenyl)-4H-benzo[f]chromene-3-carboxylate

The title compound, $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{NO}_{3}$, was synthesized by the reaction of 2-naphthol with 2,4-dichlorobenzaldehyde and ethyl cyanoacetate in ethanol in the presence of $\mathrm{KF} / \mathrm{Al}_{2} \mathrm{O}_{3}$ as catalyst. X-ray analysis reveals that the pyran ring adopts a boat conformation. In the crystal structure, the amino group is involved in both intra- and intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

$4 H$-Chromene is a building unit of some natural products. $4 H$-Chromenes with amino and cyano groups are also synthons of some special natural products (Hatokeyama et al., 1988; O'Callaghan \& McMurry, 1995). We have previously reported the synthesis of some 4 H -chromene derivatives (Shi et al., 2002; Zhuang et al., 2002). We report here the X-ray crystal structure of the title compound, (I).

(I)

The bond lengths and angles in (I) show normal values (Table 1). The pyran ring adopts a boat conformation, with atoms O 1 and C3 deviating from the C1/C2/C4/C5 plane by 0.194 (2) and 0.301 (1) \AA, respectively. A similar distortion was observed in the stucture of 2-amino-4-(2-chlorophenyl)-3-ethoxycarbonyl-4H-benzo[f]chromene (Zhuang et al., 2003). The naphthalene and substituted phenyl ring planes form dihedral angles of 10.02 (3) and $91.92(2)^{\circ}$, respectively, with the C1/C2/C4/C5 plane. An intramolecular hydrogen bond is formed between the amino group and atom O3 of the carbonyl group. Molecules related by 2_{1} screw axes are linked by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming chains in the b axis direction (Fig. 2 and Table 2)

Experimental

The title compound (I), was prepared by the reaction of 2-naphthol with 2,4-dicholorobenzaldehyde and ethyl cyanoactate in ethanol in the presence of $\mathrm{KF} / \mathrm{Al}_{2} \mathrm{O}_{3}$ as catalyst (m.p. 468-470 K). Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of an N, N-dimethylformamide-water solution.

Received 7 October 2003 Accepted 10 October 2003 Online 23 October 2003

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{NO}_{3}$
$M_{r}=414.27$
Monoclinic, $P 2_{\mathrm{d}} / n$
$a=14.505$ (2) А
$b=9.037$ (1) \AA
$c=14.913$ (2) A
$\beta=101.21$ (1) ${ }^{\circ}$
$V=1917.5(4) \AA^{3}$
$Z=4$

Data collection

Siemens $P 4$ diffractometer
ω scans
Absorption correction: ψ scan
(XSCANS; Siemens, 1994)
$T_{\text {min }}=0.770, T_{\text {max }}=0.917$
4195 measured reflections
3379 independent reflections
2292 reflections with $I>2 \sigma(I)$
$D_{x}=1.435 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 27 reflections
$\theta=2.9-15.2^{\circ}$
$\mu=0.36 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, colorless
$0.56 \times 0.52 \times 0.24 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.013 \\
& \theta_{\max }=25.0^{\circ} \\
& h=-10 \rightarrow 17 \\
& k=-5 \rightarrow 10 \\
& l=-17 \rightarrow 17 \\
& 3 \text { standard reflections } \\
& \text { every } 97 \text { reflections } \\
& \text { intensity decay: } 2.7 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.127$
$S=1.09$
3379 reflections
263 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0657 P)^{2}\right] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.43 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.26 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.0052(13)
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

O1-C1	$1.361(3)$	$\mathrm{N}-\mathrm{C} 1$	$1.335(3)$
O1-C5	$1.391(3)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.362(3)$
$\mathrm{O} 2-\mathrm{C} 14$	$1.343(3)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.520(3)$
$\mathrm{O} 2-\mathrm{C} 15$	$1.452(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.513(3)$
$\mathrm{O} 3-\mathrm{C} 14$	$1.233(3)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.365(3)$
$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 5$	$117.88(19)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$120.4(2)$
$\mathrm{C} 14-\mathrm{O} 2-\mathrm{C} 15$	$118.6(2)$	$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 6$	$114.0(2)$
N-C1-O1	$109.7(2)$	$\mathrm{O} 3-\mathrm{C} 14-\mathrm{O} 2$	$121.6(2)$
N-C1-C2	$128.1(3)$	$\mathrm{O} 3-\mathrm{C} 14-\mathrm{C} 2$	$126.8(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	$122.2(2)$	$\mathrm{O} 2-\mathrm{C} 14-\mathrm{C} 2$	$111.6(2)$
C1-C2-C14	$119.2(2)$	$\mathrm{O} 2-\mathrm{C} 15-\mathrm{C} 16$	$107.7(3)$
C5-O1-C1-N	$-165.7(2)$	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 4$	$-21.6(3)$
C5-O1-C1-C2	$16.0(3)$	$\mathrm{C} 1-\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 6$	$158.7(2)$
N-C1-C2-C14	$6.6(4)$	$\mathrm{O} 1-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$178.1(2)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 14$	$-175.5(2)$	$\mathrm{C} 15-\mathrm{O} 2-\mathrm{C} 14-\mathrm{O} 3$	$-11.5(4)$
N-C1-C2-C3	$-168.9(2)$	$\mathrm{C} 15-\mathrm{O} 2-\mathrm{C} 14-\mathrm{C} 2$	$170.0(3)$
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$9.1(4)$	$\mathrm{C} 14-\mathrm{O} 2-\mathrm{C} 15-\mathrm{C} 16$	$-87.6(4)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N}-\mathrm{H} 1 A \cdots \mathrm{O} 3$	$0.859(10)$	$2.09(2)$	$2.726(3)$	$130(2)$
N-H1 $B \cdots \mathrm{O3}^{\mathrm{i}}$	$0.851(10)$	$2.215(13)$	$3.033(3)$	$161(3)$

Symmetry code: (i) $\frac{3}{2}-x, y-\frac{1}{2}, \frac{3}{2}-z$.
Amino atoms $\mathrm{H} 1 A$ and $\mathrm{H} 1 B$ were refined isotropically. The positions of the other H atoms were calculated and refined as riding, with $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
View (Spek, 2003) of part of the crystal structure of (I), showing hydrogen bonding as dashed lines. Colour codes: green Cl , red O , blue N , and black C.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1997); program(s) used to solve structure: $S H E L X T L$; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank the Foundation of the 'Surpassing Project' of Jiangsu Province for financial support.

References

Hatokeyama, S., Ochi, N., Numata, H. \& Takano, S. (1988). J. Chem. Soc. Chem. Commun. pp. 1202-1204.
O’Callaghan, C. N. \& McMurry, T. B. H. (1995). J. Chem. Res. (S), p. 214.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Shi, D. Q., Wang, X. S. \& Tu, S. J. (2002). Chin. J. Org. Chem. 22, 1053-1056. Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Zhuang, Q. Y., Shi, D. Q., Tu, S. J. \& Wang, X. S. (2002). Chin. J. Appl. Chem. 19, 1019-1020.
Zhuang, Q. Y., Shi, D. Q. \& Wang, X. S. (2003). Acta Cryst. E59, o1474-o1475.

